首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   51篇
  国内免费   37篇
测绘学   1篇
地球物理   118篇
地质学   226篇
海洋学   23篇
天文学   1篇
综合类   14篇
自然地理   119篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   9篇
  2014年   6篇
  2013年   23篇
  2012年   9篇
  2011年   9篇
  2010年   16篇
  2009年   23篇
  2008年   36篇
  2007年   29篇
  2006年   19篇
  2005年   27篇
  2004年   34篇
  2003年   22篇
  2002年   22篇
  2001年   14篇
  2000年   20篇
  1999年   19篇
  1998年   12篇
  1997年   9篇
  1996年   10篇
  1995年   10篇
  1994年   13篇
  1993年   10篇
  1992年   15篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
1.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
2.
The coarse-grained, upper Cambrian Owen Group of western and northern Tasmania is a prominent feature of the Tasmanian landscape and regional map series. The group has previously been divided into four informal formations (Lower Owen Conglomerate, Middle Owen Sandstone, Middle Owen Conglomerate and Upper Owen Sandstone) that have been correlated across the state over tens to hundreds of kilometres. The deposition of these sediments is largely believed to have occurred during extensional tectonics, but some authors continue to argue a compressional tectonic regime. Detailed mapping and sedimentological work around Proprietary Peak on the Mount Jukes massif, 10 km south of Queenstown, Tasmania, has identified significant depositional variations controlled by early growth faulting and paleotopography. Discontinuity of stratigraphic units (L6–L13) across two growth faults on the north face of Proprietary Peak shows the strong effect on sediment deposition in the area. Paleotopography is also evident with most stratigraphic units (L8–L13 and U1) gradually onlapping basement during their deposition. Significant paleotopography has also been identified on East Jukes Peak, where lower Owen Group sedimentary units onlap basement volcanics, with no evidence for tectonically controlled deposition. Field evidence strongly supports the deposition of the Owen Group during extensional tectonics, after a period of prolonged erosion of the underlying Mount Read Volcanics. The distinct variation in vertical and lateral extent of stratigraphic units within the Owen Group in the Proprietary Peak area suggests that widespread lithostratigraphic correlation of older Owen Group sedimentary units across Tasmania may not be feasible.  相似文献   
3.
Characterising youthful strike-slip fault systems within transtensional regimes is often complicated by the presence of tectonic geomorphic features produced by normal faulting associated with oblique extension. The Petersen Mountain fault in the northern Walker Lane tectonic province exhibits evidence of both normal and strike-slip faulting. We present the results of geologic and geomorphic mapping, and palaeoseismic trenching that characterise the fault's style and sense of deformation. The fault consists of two major traces. The western trace displaces colluvial, landslide, and middle to late Pleistocene alluvial fans and is associated with aligned range front saddles, linear drainages, and oversteepened range front slopes. The eastern trace is associated with a low linear bedrock ridge, a narrow graben, right deflected stream channels, and scarps in late Pleistocene alluvial fan deposits. A trench on the eastern trace of the fault exposed a clear juxtaposition of disintegrated granodiorite bedrock against sand and boulder alluvial fan deposits across a steeply east-dipping fault. The stratigraphic evidence supports the occurrence of at least one late Pleistocene earthquake with a component of lateral displacement. As such, the Petersen Mountain fault accommodates part of the ~7 mm/yr of dextral shear distributed across the northern Walker Lane.  相似文献   
4.
The cyclic nature of glaciations and related postglacial faulting represents a risk for the deep geological disposal of spent nuclear fuel in areas likely to be affected by future glaciations. Seismic history was therefore studied by means of detecting geomorphological structures on airborne laser scanning digital elevation models and underground by excavating in an esker and trenching across a postglacial fault located in northern Fennoscandia. OLS dating and assessing the geomorphological structures was used for timing of the seismic history. The results suggest that the faulting of different segments in the Pasmajärvi complex is due to at least two late Weichselian events, which probably occurred both subglacially and postglacially. The most reliable input for the moment magnitude estimates was vertical slip profiles, and therefore these estimates (MW ≈ 6.4–6.9) are suggested. © 2020 John Wiley & Sons, Ltd.  相似文献   
5.
The Gediz (Ala?ehir) Graben is located in the highly tectonically active and seismogenic region of Western Turkey. The rivers upstream of the normal fault‐bounded graben each contain a non‐lithologic knickpoint, including those that drain through inferred fault segment boundaries. Knickpoint heights measured vertically from the fault scale with footwall relief and documented fault throw (vertical displacement). Consequently, we deduce these knickpoints were initiated by an increase in slip rate on the basin‐bounding fault, driven by linkage of the three main fault segments of the high‐angle graben bounding fault array. Fault interaction theory and ratios of channel steepness suggest that the slip rate enhancement factor on linkage was a factor of 3. We combine this information with geomorphic and structural constraints to estimate that linkage took place between 0.6 Ma and 1 Ma. Calculated pre‐ and post‐linkage throw rates are 0.6 and 2 mm/yr respectively. Maximum knickpoint retreat rates upstream of the faults range from 4.5 to 28 mm/yr, faster than for similar catchments upstream of normal faults in the Central Apennines and the Hatay Graben of Turkey, and implying a fluvial landscape response time of 1.6 to 2.7 Myr. We explore the relative controls of drainage area and precipitation on these retreat rates, and conclude that while climate variation and fault throw rate partially explain the variations seen, lithology remains a potentially important but poorly characterised variable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
In the north-western Bonaparte Basin (North West Shelf of Australia) Neogene to Recent flexure-induced extension superimposed obliquely over the Mesozoic rift structures. Thus, the area offers a good opportunity to investigate the dynamics and architecture of oblique extension fault systems. Analysis of basin-scale 2D and 3D seismic data along the Vulcan sub-basin shows that Neogene deformation produced a new set of extensional, en échelon faults, at places accompanied by the reactivation of the Mesozoic faults. The pre-existing Mesozoic structures strongly control the distribution of the Neogene-Recent deformation, both at regional and local scales. Main controls on the Neogene-Recent fault style, density and segmentation/linkage include: (1) the orientation of the underlying Mesozoic structures, (2) the obliqueness of the younger extension relative to the rift-inherited faults, and (3) the proximity to the Timor Trough. Three types of vertical relationships have been observed between Mesozoic and Neogene-Recent faults. Hard linkages seems to develop when both fault systems trend parallel, therefore increasing risks for trap integrity. It is suggested that the orientation of maximum horizontal stress (SHmax) relative to the Mesozoic faults, forming hydrocarbon traps, is critical for their potential seal/leak behaviour. Stratigraphic growth across the faults indicates that main fault activity occurred during the Plio-Pleistocene, which corresponds to the timing of tectonic loading on Timor Island and the development of lithospheric flexure. Synchronism of normal faulting with flexural bending suggests that extensional deformation on the descending Australian margin accompanied the formation of the Timor Trough.  相似文献   
7.
俯冲带地震诱发机制:研究进展综述   总被引:4,自引:0,他引:4  
邵同宾  嵇少丞 《地质论评》2015,61(2):245-268
俯冲带作为地球循环体系的关键部位,具有构造活跃、地震多发以及地质条件复杂等特征。基于震源位置,俯冲带地震既可划分为板间和板内地震,也可分为浅源、中源和深源地震。俯冲带内的浅源地震包括板间地震和浅源板内地震,而中源和深源地震皆属于板内地震。在地球浅部,温度与压力低,浅源地震是由岩石发生脆性破裂或沿着先存断层发生不稳定摩擦滑移造成的。随着深度增加,温度和压力的增加使得流行于浅部的脆性和摩擦行为在无水条件下被强烈抑制,岩石从而表现为可抑制地震的韧性行为,使得中-深源地震的诱发机制有别于常规的脆性行为。随着研究的逐渐深入,人们了解到中源地震的诱发机制主要是脱水或与流体相关的致脆以及塑性剪切失稳,而深源地震的成因主要是相变致裂。然而,中-深源地震很可能是两种或两种以上机制共同作用的结果。例如,在中源深度既可能是流体相关的致脆导致脱水源区的脆性围岩产生地震,亦可能是脱水的蛇纹岩本身可能在流体孔隙压的作用下作粘滑滑移,而前者比后者更为重要。孕震带宽度大于"反裂隙模型"预测的亚稳态橄榄石冷核宽度的深源地震可能是由第一阶段的相变致裂和第二阶段的塑性剪切失稳诱发,而孕震带的实际宽度与预测宽度相当的深源地震则可能仅由相变致裂引起。只要过渡带内名义无水矿物中的结构水能释放出来,脱水致脆同样可能触发一些深源地震;而塑性剪切失稳不仅能在中-深源地震触发后的扩展阶段起着主导作用,而且还能单独触发一些中-深源地震,因此能够解释大多数反复发生的中-深源地震活动。  相似文献   
8.
The Bunga beds are bounded by faults adjacent to which are fanglomerates that form part of an early Late Devonian volcanic rift basin. Some cross‐faults acted as precursors for later regional deformation that kinked the Ordovician basement and gently folded the basin sediments in a northwest‐southeast direction. Details of the faulted junction at Picnic Point and orientation of cleavage microstructures in the fanglomerates support the dating of the north‐south regional F2 deformation as Middle Devonian or older and the northwest‐southeast F3 kinking as post‐early Late Devonian.  相似文献   
9.
The diagenetic transformation of biogenic silica from opal-A to opal-CT was recognised on seismic reflection data over an area of 78 × 103 km2 on the mid-Norwegian margin. The opal-A/CT diagenetic boundary appears as a positive, high amplitude reflection that generally cross-cuts the hosting stratigraphy. We demonstrate that it is not a sea bottom simulating reflection (BSR) and also that is not in thermal equilibrium with the present day isotherms. We present arguments that three styles of deformation associated with the opal-A/CT reflection – polygonal faulting, regional anticlines and synclines and differential compaction folding – indicate that the silica diagenesis reaction front is fossilised at a regional scale. Isochore maps demonstrate the degree of conformity between the opal-A/CT reflection and three seismic horizons of Late Miocene to Early Pliocene age that potentially represent the paleo-seabed when ‘fossilisation’ of the reaction front took place. The seismic interpretational criteria for recognition of a fossilised diagenetic front are evaluated and the results of our study are integrated with previous studies from other basins of the NE Atlantic in order to determine if the arrest of silica diagenesis was diachronous along this continental margin.  相似文献   
10.
The Pajarito fault forms the western margin of the Rio Grande rift in north-central New Mexico, and lies adjacent to Los Alamos National Laboratory, a major Federal research facility. Vertical displacement on this normal fault over the past 1.2 Ma has created a 50- to 120-m-high fault scarp on Bandelier Tuff (1.2 Ma), yielding a long-term average slip rate of ca. 0.1 mm/yr. In support of a Laboratory-wide seismic hazards assessment, we excavated 14 trenches in the Pajarito fault zone to determine the age of the most recent displacement event, the recurrence interval between events, the displacement per event, and the variability in slip rate and recurrence through time. The large number of trenches was required by the large height of the fault scarp and the complexity of the fault zone. Only about half the trenches contained significant thicknesses of Holocene deposits, but in those trenches there was clear evidence for an early-to-mid-Holocene displacement event. The previous event was at least 20–40 ka, and the average recurrence interval over the past ca. 300 ka was about 20–40 kyr. We infer that much of the structural relief across this fault developed soon after eruption of the Bandelier Tuff between 1.0 and 1.2 Ma, and that slip rate slowed considerably after that time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号